European lapse dataset from the direct channel
eudirectlapse.RdThe eudirectlapse dataset is based on one-year vehicle insurance
renewal quotes for an unknown year and an unknown insurer. There are 23,060 policies.
Usage
data(eudirectlapse)Format
eudirectlapse is a data frame of 19 columns and 23,060 rows:
lapseA binary variable indicating the lapse of the customer.
polholder_ageThe age of the policyholder.
polholder_BMCevolThe evolution of bonus/malus coefficient (BMC) of the policyholder: 3 categorical values (
"down"when bonus increases,"stable"when coefficient does not change,"up"when malus increases.polholder_diffdriverThe difference status between the policyholder and the driver.
polholder_genderThe gender of the policyholder.
polholder_jobThe job of the policyholder: either
"medical"or"normal".policy_ageThe age of the policy.
policy_caruseThe car usage.
policy_nbcontractThe number of policies given policyholder for this insurer.
prem_finalThe final renewal premium value proposed to policyholder.
prem_freqperyearThe premium frequency per year.
prem_lastThe premium paid by the policyholder for the last insurance coverage.
prem_marketA proxy of the market premium.
prem_pureThe technical premium value.
vehicl_ageThe vehicle age.
vehicl_agepurchaseThe vehicle age at purchase.
vehicl_garageThe garage type (categorical values).
vehicl_powerkwThe horsepower of the car (categorical values).
vehicl_regionThe living region of policyholder (unknown category).
Examples
# (1) load of data
#
data(eudirectlapse)
head(eudirectlapse)
#> lapse polholder_age polholder_BMCevol polholder_diffdriver polholder_gender
#> 1 0 38 stable only partner Male
#> 2 1 35 stable same Male
#> 3 1 29 stable same Male
#> 4 0 33 down same Female
#> 5 0 50 stable same Male
#> 6 0 37 stable only partner Male
#> polholder_job policy_age policy_caruse policy_nbcontract
#> 1 normal 1 private or freelance work 1
#> 2 normal 1 private or freelance work 1
#> 3 normal 0 private or freelance work 1
#> 4 medical 2 private or freelance work 1
#> 5 normal 8 unknown 1
#> 6 normal 1 private or freelance work 1
#> prem_final prem_freqperyear prem_last prem_market prem_pure vehicl_age
#> 1 232.46 4 per year 232.47 221.56 243.59 9
#> 2 208.53 4 per year 208.54 247.56 208.54 15
#> 3 277.34 1 per year 277.35 293.32 277.35 14
#> 4 239.51 4 per year 244.40 310.91 219.95 17
#> 5 554.54 4 per year 554.55 365.46 519.50 16
#> 6 266.46 1 per year 266.46 341.88 266.46 13
#> vehicl_agepurchase vehicl_garage vehicl_powerkw vehicl_region
#> 1 8 private garage 225 kW Reg7
#> 2 7 private garage 100 kW Reg4
#> 3 6 underground garage 100 kW Reg7
#> 4 10 street 75 kW Reg5
#> 5 8 street 75 kW Reg14
#> 6 10 underground garage 100 kW Reg4