European lapse dataset from the direct channel
eudirectlapse.Rd
The eudirectlapse
dataset is based on one-year vehicle insurance
renewal quotes for an unknown year and an unknown insurer. There are 23,060 policies.
Usage
data(eudirectlapse)
Format
eudirectlapse
is a data frame of 19 columns and 23,060 rows:
lapse
A binary variable indicating the lapse of the customer.
polholder_age
The age of the policyholder.
polholder_BMCevol
The evolution of bonus/malus coefficient (BMC) of the policyholder: 3 categorical values (
"down"
when bonus increases,"stable"
when coefficient does not change,"up"
when malus increases.polholder_diffdriver
The difference status between the policyholder and the driver.
polholder_gender
The gender of the policyholder.
polholder_job
The job of the policyholder: either
"medical"
or"normal"
.policy_age
The age of the policy.
policy_caruse
The car usage.
policy_nbcontract
The number of policies given policyholder for this insurer.
prem_final
The final renewal premium value proposed to policyholder.
prem_freqperyear
The premium frequency per year.
prem_last
The premium paid by the policyholder for the last insurance coverage.
prem_market
A proxy of the market premium.
prem_pure
The technical premium value.
vehicl_age
The vehicle age.
vehicl_agepurchase
The vehicle age at purchase.
vehicl_garage
The garage type (categorical values).
vehicl_powerkw
The horsepower of the car (categorical values).
vehicl_region
The living region of policyholder (unknown category).
Examples
# (1) load of data
#
data(eudirectlapse)
head(eudirectlapse)
#> lapse polholder_age polholder_BMCevol polholder_diffdriver polholder_gender
#> 1 0 38 stable only partner Male
#> 2 1 35 stable same Male
#> 3 1 29 stable same Male
#> 4 0 33 down same Female
#> 5 0 50 stable same Male
#> 6 0 37 stable only partner Male
#> polholder_job policy_age policy_caruse policy_nbcontract
#> 1 normal 1 private or freelance work 1
#> 2 normal 1 private or freelance work 1
#> 3 normal 0 private or freelance work 1
#> 4 medical 2 private or freelance work 1
#> 5 normal 8 unknown 1
#> 6 normal 1 private or freelance work 1
#> prem_final prem_freqperyear prem_last prem_market prem_pure vehicl_age
#> 1 232.46 4 per year 232.47 221.56 243.59 9
#> 2 208.53 4 per year 208.54 247.56 208.54 15
#> 3 277.34 1 per year 277.35 293.32 277.35 14
#> 4 239.51 4 per year 244.40 310.91 219.95 17
#> 5 554.54 4 per year 554.55 365.46 519.50 16
#> 6 266.46 1 per year 266.46 341.88 266.46 13
#> vehicl_agepurchase vehicl_garage vehicl_powerkw vehicl_region
#> 1 8 private garage 225 kW Reg7
#> 2 7 private garage 100 kW Reg4
#> 3 6 underground garage 100 kW Reg7
#> 4 10 street 75 kW Reg5
#> 5 8 street 75 kW Reg14
#> 6 10 underground garage 100 kW Reg4