Portfolio Mortality and Disability Tables
freportfolio.Rd
The freprojqxINSEE
table has been established on
INSEE projection for the period 2007-2060 based a median
scenario, cf. Blanpain and Chardon (2010), adjusted and selected for the purpose of the book.
The frefictivetable
represents a fictive portfolio of
87,090 individuals that enter in a healthy condition and have been observed
between 1996-01-01 and 2007-12-31.
The exit (that may occur before December 2007) is either "deceased"
or "other"
.
The frefictivetable2,frefictivetable3
represents a fictive portfolio of
100,000 individuals that enter in a healthy condition and have been observed
between December 1988 and December 1998.
The exit is either "deceased"
or "other"
for censored observation.
The freptfpermdis
and freptftempdis
datasets comes from two portfolio
of two French private companies (insurer or institute), respectively for permanent
disability insurance and temporary disability insurance.
Format
freprojqxINSEE
is a data frame of 109 columns and 66 rows:
Age
The age.
F2007
,...,F2060
The 1-year female death probabilities
M2007
,...,M2060
The 1-year male death probabilities
frefictivetable
is a data frame of 6 columns and 87,090 rows:
Id
the identification number.
Gender
the gender as
"factor"
.DateOfBirth
the date of birth as
"Date"
.DateIn
the entry date as
"Date"
.DateOut
the exit date as
"Date"
.Status
the status at exit :
"deceased"
(i.e. non-censored observation) or"other"
(i.e. censored observation) as"factor"
.
frefictivetable2,frefictivetable3
are data frames of 5 columns and 100,000 rows:
DateIn
the entry date as
"Date"
.DateOut
the exit date as
"Date"
.Status
the status at exit :
"deceased"
(i.e. non-censored observation) or"other"
(i.e. censored observation) as"factor"
.DateOfBirth
the date of birth as
"Date"
.Gender
the gender as
"factor"
.
freptfpermdis
is a data frame of 6 columns and 1,048,575 rows:
PolicyID
the policy identification number.
BirthDate
the date of birth.
Gender
the sex:
M
for male andF
for female.EntryDate
the entry date.
ExitDate
the exit date.
ExitStatus
the status at exit:
"deceased"
(i.e. non-censored observation) or"other"
(i.e. censored observation).
freptftempdis
is a data frame of 9 columns and 560,725 rows:
Gender
the sex:
M
for male andF
for female.JobType
the job category:
"employee"
,"managers, engineers, sales responsibles"
,"non-manager employee"
"other 1"
,"other 2"
,"other 3"
,"other 4"
,"other 5"
,"technician"
,"unemployed workers"
.UWType
the underwriting type: either
"specific policy in a collective agreement"
,"specific policy not linked to a collective agreement"
,"standard policy in a collective agreement"
or"standard policy not linked to a collective agreement"
.JobStopType
the reason for disability:
"illness"
,"work accident"
,"pregnancy"
(for women only).Birthdate
the date of birth.
OccurDate
the date of occurence.
EntryDate
the entry date.
ExitDate
the exit date.
JobComebackType
the status at exit:
"recovered"
(i.e. non-censored observation: the person goes back to work),"disabled"
(i.e. non-censored observation: the person is permanently disabled) or"on-going"
(i.e. censored observation).
Source
For freprojqxINSEE
, Blanpain and Chardon (2010).
For frefictivetable
, Chapter 9 of Computational Actuarial Science with R, Ed. Arthur Charpentier,
Chapman and Hall/CRC The R Series, 2014.
For freptfpermdis
, freptftempdis
,
RessourcesActuarielles
References
Blanpain, N. and Chardon, O. (2010). Projections de populations 2007-2060 pour la France metropolitaine: methode et principaux resultats. Serie des Documents de Travail de la direction des statistiques Demographiques et Sociales F1008, INSEE.
Examples
# (1) load of data
#
data(freprojqxINSEE)
data(frefictivetable)
head(freprojqxINSEE)
#> Age F2007 F2008 F2009 F2010 F2011
#> 1 30 0.0003115935 0.0003060422 0.0003004796 0.0002949099 0.0002893372
#> 2 31 0.0003483465 0.0003421842 0.0003360418 0.0003299222 0.0003238283
#> 3 32 0.0003890368 0.0003822279 0.0003754724 0.0003687718 0.0003621274
#> 4 33 0.0004340360 0.0004265487 0.0004191498 0.0004118392 0.0004046167
#> 5 34 0.0004837451 0.0004755527 0.0004674842 0.0004595380 0.0004517125
#> 6 35 0.0005385961 0.0005296784 0.0005209197 0.0005123170 0.0005038673
#> F2012 F2013 F2014 F2015 F2016 F2017
#> 1 0.0002837657 0.0002781994 0.0002726422 0.0002670980 0.0002615706 0.0002560635
#> 2 0.0003177627 0.0003117282 0.0003057273 0.0002997624 0.0002938361 0.0002879507
#> 3 0.0003555404 0.0003490121 0.0003425438 0.0003361364 0.0003297912 0.0003235091
#> 4 0.0003974822 0.0003904355 0.0003834764 0.0003766046 0.0003698200 0.0003631223
#> 5 0.0004440062 0.0004364176 0.0004289450 0.0004215871 0.0004143422 0.0004072089
#> 6 0.0004955677 0.0004874155 0.0004794079 0.0004715421 0.0004638154 0.0004562253
#> F2018 F2019 F2020 F2021 F2022 F2023
#> 1 0.0002505805 0.0002451249 0.0002397001 0.0002343094 0.0002289559 0.0002236427
#> 2 0.0002821084 0.0002763114 0.0002705618 0.0002648617 0.0002592130 0.0002536176
#> 3 0.0003172912 0.0003111382 0.0003050512 0.0002990309 0.0002930782 0.0002871936
#> 4 0.0003565112 0.0003499865 0.0003435476 0.0003371945 0.0003309266 0.0003247436
#> 5 0.0004001857 0.0003932712 0.0003864640 0.0003797625 0.0003731653 0.0003666712
#> 6 0.0004487692 0.0004414446 0.0004342489 0.0004271799 0.0004202351 0.0004134123
#> F2024 F2025 F2026 F2027 F2028 F2029
#> 1 0.0002183726 0.0002131484 0.0002079730 0.0002028487 0.0001977781 0.0001927635
#> 2 0.0002480772 0.0002425936 0.0002371684 0.0002318030 0.0002264990 0.0002212578
#> 3 0.0002813779 0.0002756317 0.0002699557 0.0002643502 0.0002588158 0.0002533529
#> 4 0.0003186451 0.0003126307 0.0003067000 0.0003008525 0.0002950878 0.0002894054
#> 5 0.0003602787 0.0003539863 0.0003477929 0.0003416970 0.0003356973 0.0003297925
#> 6 0.0004067090 0.0004001232 0.0003936526 0.0003872951 0.0003810486 0.0003749110
#> F2030 F2031 F2032 F2033 F2034 F2035
#> 1 0.0001878072 0.0001829111 0.0001780773 0.0001733077 0.0001686181 0.0001640912
#> 2 0.0002160806 0.0002109686 0.0002059230 0.0002009448 0.0001960472 0.0001913009
#> 3 0.0002479619 0.0002426431 0.0002373969 0.0002322234 0.0002271325 0.0002221803
#> 4 0.0002838047 0.0002782854 0.0002728469 0.0002674886 0.0002622167 0.0002570696
#> 5 0.0003239812 0.0003182623 0.0003126345 0.0003070964 0.0003016502 0.0002963141
#> 6 0.0003688803 0.0003629545 0.0003571317 0.0003514100 0.0003457872 0.0003402597
#> F2036 F2037 F2038 F2039 F2040 F2041
#> 1 0.0001597342 0.0001555399 0.0001515015 0.0001476126 0.0001438671 0.0001402590
#> 2 0.0001867124 0.0001822758 0.0001779854 0.0001738359 0.0001698221 0.0001659390
#> 3 0.0002173717 0.0002127021 0.0002081670 0.0002037620 0.0001994830 0.0001953259
#> 4 0.0002520503 0.0002471555 0.0002423815 0.0002377250 0.0002331829 0.0002287520
#> 5 0.0002910890 0.0002859723 0.0002809615 0.0002760542 0.0002712480 0.0002665406
#> 6 0.0003348256 0.0003294831 0.0003242306 0.0003190666 0.0003139895 0.0003089978
#> F2042 F2043 F2044 F2045 F2046 F2047
#> 1 0.0001367828 0.0001334330 0.0001302047 0.0001270929 0.0001240930 0.0001212006
#> 2 0.0001621819 0.0001585462 0.0001550276 0.0001516219 0.0001483250 0.0001451331
#> 3 0.0001912868 0.0001873620 0.0001835478 0.0001798408 0.0001762376 0.0001727350
#> 4 0.0002244291 0.0002202115 0.0002160961 0.0002120803 0.0002081612 0.0002043364
#> 5 0.0002619298 0.0002574134 0.0002529893 0.0002486553 0.0002444095 0.0002402498
#> 6 0.0003040900 0.0002992645 0.0002945200 0.0002898550 0.0002852682 0.0002807580
#> F2048 F2049 F2050 F2051 F2052 F2053
#> 1 0.0001184114 0.0001157214 0.0001131267 0.0001106236 0.0001082087 0.0001058784
#> 2 0.0001420425 0.0001390496 0.0001361509 0.0001333433 0.0001306236 0.0001279887
#> 3 0.0001693297 0.0001660188 0.0001627994 0.0001596686 0.0001566238 0.0001536622
#> 4 0.0002006033 0.0001969593 0.0001934022 0.0001899295 0.0001865391 0.0001832288
#> 5 0.0002361744 0.0002321813 0.0002282687 0.0002244347 0.0002206777 0.0002169960
#> 6 0.0002763233 0.0002719627 0.0002676748 0.0002634585 0.0002593124 0.0002552354
#> F2054 F2055 F2056 F2057 F2058 F2059
#> 1 0.0001036298 0.0001014595 9.936475e-05 9.734269e-05 9.539062e-05 9.350598e-05
#> 2 0.0001254357 0.0001229618 1.205644e-04 1.182409e-04 1.159888e-04 1.138056e-04
#> 3 0.0001507813 0.0001479788 1.452522e-04 1.425993e-04 1.400178e-04 1.375055e-04
#> 4 0.0001799964 0.0001768398 1.737572e-04 1.707465e-04 1.678058e-04 1.649334e-04
#> 5 0.0002133878 0.0002098515 2.063856e-04 2.029884e-04 1.996585e-04 1.963944e-04
#> 6 0.0002512262 0.0002472836 2.434065e-04 2.395938e-04 2.358443e-04 2.321569e-04
#> F2060 M2007 M2008 M2009 M2010 M2011
#> 1 0.0000916863 0.0009038192 0.0008846367 0.0008655757 0.0008466459 0.0008278568
#> 2 0.0001116892 0.0009440678 0.0009248942 0.0009058949 0.0008870752 0.0008684401
#> 3 0.0001350606 0.0009917700 0.0009724810 0.0009534185 0.0009345838 0.0009159782
#> 4 0.0001621275 0.0010478634 0.0010283288 0.0010090719 0.0009900908 0.0009713836
#> 5 0.0001931947 0.0011134843 0.0010935643 0.0010739725 0.0010547040 0.0010357539
#> 6 0.0002285305 0.0011900053 0.0011695476 0.0011494669 0.0011297558 0.0011104070
#> M2012 M2013 M2014 M2015 M2016 M2017
#> 1 0.0008092175 0.0007907369 0.0007724234 0.0007542850 0.0007363294 0.0007185641
#> 2 0.0008499947 0.0008317434 0.0008136907 0.0007958408 0.0007781976 0.0007607649
#> 3 0.0008976030 0.0008794591 0.0008615475 0.0008438691 0.0008264244 0.0008092141
#> 4 0.0009529483 0.0009347828 0.0009168850 0.0008992529 0.0008818844 0.0008647772
#> 5 0.0010171175 0.0009987902 0.0009807673 0.0009630444 0.0009456168 0.0009284803
#> 6 0.0010914136 0.0010727687 0.0010544655 0.0010364973 0.0010188577 0.0010015404
#> M2018 M2019 M2020 M2021 M2022 M2023
#> 1 0.0007009959 0.0006836316 0.0006664774 0.0006495392 0.0006328226 0.0006163327
#> 2 0.0007435460 0.0007265443 0.0007097627 0.0006932040 0.0006768709 0.0006607657
#> 3 0.0007922385 0.0007754981 0.0007589929 0.0007427231 0.0007266887 0.0007108895
#> 4 0.0008479294 0.0008313385 0.0008150025 0.0007989191 0.0007830860 0.0007675010
#> 5 0.0009116303 0.0008950626 0.0008787728 0.0008627569 0.0008470106 0.0008315299
#> 6 0.0009845390 0.0009678475 0.0009514599 0.0009353704 0.0009195732 0.0009040626
#> M2024 M2025 M2026 M2027 M2028 M2029
#> 1 0.0006000744 0.0005840521 0.0005682701 0.0005527320 0.0005374413 0.0005224011
#> 2 0.0006448904 0.0006292471 0.0006138374 0.0005986629 0.0005837248 0.0005690243
#> 3 0.0006953253 0.0006799957 0.0006649004 0.0006500387 0.0006354100 0.0006210137
#> 4 0.0007521618 0.0007370660 0.0007222114 0.0007075956 0.0006932161 0.0006790708
#> 5 0.0008163106 0.0008013489 0.0007866407 0.0007721822 0.0007579695 0.0007439989
#> 6 0.0008888333 0.0008738797 0.0008591967 0.0008447789 0.0008306213 0.0008167190
#> M2030 M2031 M2032 M2033 M2034 M2035
#> 1 0.0005076143 0.0004930831 0.0004788099 0.0004647964 0.0004510775 0.0004378458
#> 2 0.0005545622 0.0005403394 0.0005263563 0.0005126132 0.0004991373 0.0004860834
#> 3 0.0006068488 0.0005929145 0.0005792097 0.0005657335 0.0005525044 0.0005396365
#> 4 0.0006651572 0.0006514728 0.0006380154 0.0006247824 0.0006117841 0.0005990908
#> 5 0.0007302666 0.0007167690 0.0007035023 0.0006904631 0.0006776528 0.0006650965
#> 6 0.0008030671 0.0007896608 0.0007764954 0.0007635663 0.0007508663 0.0007383754
#> M2036 M2037 M2038 M2039 M2040 M2041
#> 1 0.0004251136 0.0004128597 0.0004010641 0.0003897075 0.0003787718 0.0003682394
#> 2 0.0004734623 0.0004612579 0.0004494550 0.0004380387 0.0004269948 0.0004163098
#> 3 0.0005271377 0.0005149964 0.0005032011 0.0004917408 0.0004806049 0.0004697832
#> 4 0.0005867067 0.0005746236 0.0005628333 0.0005513280 0.0005401002 0.0005291424
#> 5 0.0006527939 0.0006407393 0.0006289275 0.0006173533 0.0006060115 0.0005948972
#> 6 0.0007260875 0.0007139995 0.0007021081 0.0006904103 0.0006789030 0.0006675831
#> M2042 M2043 M2044 M2045 M2046 M2047
#> 1 0.0003580936 0.0003483186 0.0003388993 0.0003298210 0.0003210701 0.0003126332
#> 2 0.0004059706 0.0003959646 0.0003862798 0.0003769048 0.0003678283 0.0003590398
#> 3 0.0004592657 0.0004490429 0.0004391055 0.0004294448 0.0004200520 0.0004109188
#> 4 0.0005184475 0.0005080085 0.0004978186 0.0004878713 0.0004781601 0.0004686789
#> 5 0.0005840054 0.0005733314 0.0005628706 0.0005526183 0.0005425702 0.0005327219
#> 6 0.0006564476 0.0006454937 0.0006347185 0.0006241190 0.0006136926 0.0006034364
#> M2048 M2049 M2050 M2051 M2052 M2053
#> 1 0.0003044978 0.0002966519 0.0002890838 0.0002817827 0.0002747379 0.0002679394
#> 2 0.0003505290 0.0003422860 0.0003343015 0.0003265663 0.0003190718 0.0003118094
#> 3 0.0004020373 0.0003933997 0.0003849984 0.0003768263 0.0003688763 0.0003611416
#> 4 0.0004594217 0.0004503825 0.0004415557 0.0004329358 0.0004245174 0.0004162953
#> 5 0.0005230692 0.0005136078 0.0005043338 0.0004952431 0.0004863319 0.0004775963
#> 6 0.0005933477 0.0005834240 0.0005736624 0.0005640606 0.0005546158 0.0005453256
#> M2054 M2055 M2056 M2057 M2058 M2059
#> 1 0.0002613777 0.0002550435 0.0002489280 0.0002430228 0.0002373200 0.0002318116
#> 2 0.0003047713 0.0002979496 0.0002913369 0.0002849260 0.0002787100 0.0002726823
#> 3 0.0003536159 0.0003462926 0.0003391658 0.0003322295 0.0003254780 0.0003189057
#> 4 0.0004082643 0.0004004197 0.0003927565 0.0003852701 0.0003779559 0.0003708097
#> 5 0.0004690327 0.0004606375 0.0004524070 0.0004443379 0.0004364267 0.0004286701
#> 6 0.0005361876 0.0005271992 0.0005183582 0.0005096621 0.0005011087 0.0004926956
#> M2060
#> 1 0.0002264905
#> 2 0.0002668366
#> 3 0.0003125075
#> 4 0.0003638270
#> 5 0.0004210649
#> 6 0.0004844206
head(frefictivetable)
#> Id Gender DateOfBirth DateIn DateOut Status
#> 1 100001 Female 1973-10-10 1996-01-01 2003-12-01 other
#> 2 100002 Male 1901-05-12 1996-01-01 2001-04-21 deceased
#> 3 100003 Female 1970-07-10 1996-01-01 2000-02-01 other
#> 4 100004 Male 1916-07-07 1996-01-01 2002-01-28 deceased
#> 5 100005 Female 1950-10-31 1996-01-01 2003-11-01 other
#> 6 100006 Male 1918-04-06 1996-01-01 2002-06-01 deceased
# (2) load of data
#
data(frefictivetable2)
range(frefictivetable2$DateIn)
#> [1] "1988-12-29" "1993-12-31"
range(frefictivetable2$DateOut)
#> [1] "1989-01-28" "1998-10-18"
# (3) other
#
if (FALSE) { # \dontrun{
data(freptfpermdis)
data(freptftempdis)
head(freptfpermdis)
head(freptftempdis)
} # }